Airfoil Shape Optimization of a Horizontal Axis Wind Turbine Blade using a Discrete Adjoint Solver

نویسندگان

چکیده

In this study, airfoil shape optimization of a wind turbine blade is performed using the ANSYS Fluent Adjoint Solver. The aim process to increase output power, and objective function maximize lift drag ratio (Cl/CD ). This study applied NREL phase VI turbine, therefore, S809 used as reference profile. First, for validation numerical model, steady-state simulations are carried out at various angles attack. Then, with set fixed angle attack, , considering three Reynolds numbers, Re =3 105,4.8 105 106. Next, computations fluid flow around optimized airfoils attack AOA= 6.1° ranging from 0° 20°. results show that (i) ratios significantly improved compared baseline airfoil, (ii) improvement sensitive number, (iii) Cl/CD also another values. Thereafter, design Phase aerodynamic performances new assessed open-source code QBlade. These latter indicate when blades designed airfoils, significantly. Indeed, speed 10 m/s, power by about 38% original turbine.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Studyof the Design of Horizontal Axis Wind Turbine

In this using paper a method is presented for the aerodynamic and structural analysis of a horizontal axis wind turbine using simplified methods. In the first part of the program the optimum rotor configuration for twist and chord is determined using the momentum and blade element theories for a rotor without coning or tilting and assuming zero drag average wind velocity. Then coning angle and ...

متن کامل

Aerodynamic optimization of a 5 Megawatt wind turbine blade

Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is...

متن کامل

Aerodynamic optimization of a 5 Megawatt wind turbine blade

Wind power has been widely considered in recent years as an available and a clean renewable energy source. The cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. Hence, megawatt wind turbines are being rapidly developed in recent years. In this paper, an aerodynamic analysis of the NREL 5MW turbine is...

متن کامل

Multidisciplinary dynamic optimization of horizontal axis wind turbine design

The design of physical (plant) and control aspects of a dynamic system have traditionally been treated as two separate problems, often solved in sequence. Optimizing plant and control design disciplines separately results in sub-optimal system designs that do not capitalize on the synergistic coupling between these disciplines. This coupling is inherent in most actively controlled dynamic syste...

متن کامل

aerodynamic optimization of a 5 megawatt wind turbine blade

wind power has been widely considered in recent years as an available and a clean renewable energy source. the cost of wind energy production is currently the main issue, and increasing the size of wind turbines can reduce wind energy production costs. hence, megawatt wind turbines are being rapidly developed in recent years. in this paper, an aerodynamic analysis of the nrel 5mw turbine is car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Fluid Mechanics

سال: 2023

ISSN: ['1735-3572', '1735-3645']

DOI: https://doi.org/10.47176/jafm.16.04.1493